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ABSTRACT: Three methods of measuring the spread of shotgun pellet patterns for the purpose 
of estimating the range of fire were applied to a series of 72 00 buckshot patterns test-fired at dis- 
tances ranging from 3.6 to 10.7 m (12 to 35 ft). The methods applied were (1) the "effective shot 
dispersion" method of Mattoo and Nabar, (2) a method in which the area of the smallest circum- 
scribed rectangle that will just enclose the pellet pattern is calculated, and (3) an overlay method 
for determining the radius of the smallest circumscribed circle that will just enclose the pellet 
pattern. Regression analysis was applied to the resulting measurements of the spread of the 
pellet patterns. The "effective shot dispersion" was found to give the best fit to a linear function 
and the best range-of-fire estimates. The area of the pellet patterns was found to be a quadratic 
function of the range of fire; this measure of pellet pattern spread was also found to have very 
large shot-to-shot variations. The square root of the area of the pellet pattern was found to be a 
linear function of the range and to give acceptable range-of-fire estimates. 
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While conduct ing a series of experiments  on the ballistics of shotguns, we found that  we 
needed a method for measuring the spread of the pellet pa t te rns  produced by 00 buckshot  
loads. Generally, forensic scientists are interested in determining the spread of a pellet pat- 
tern on a target (frequently a h u m a n  being) so tha t  the range of fire may be estimated. For 
00 buckshot  patterns,  at  least two methods for measuring the spread of the pellet pa t tern  
have been advocated: Mattoo and Nabar  [1] proposed calculating the "effective shot disper- 
sion" by a basically statistical method;  other  investigators [2] have used a method in which 
the area of the smallest circumscribed rectangle tha t  just  encloses the pellet pat tern is calcu- 
lated. The method of Mattoo and  Nabar  is cumbersome to apply because of the many mea- 
surements and  calculations required, while the method using the area measure is quick and  
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easy to use. Beyond matters of convenience, however, there seems to be little basis for prefer- 
ring one method over the other. No studies have been published that compare these methods 
in terms of the statistical correlations between range of fire and the measurement of pellet 
pattern spread being used and in terms of the confidence limits to be placed on range-of-fire 
estimates obtained by each method. To remedy this, we have fired a series of 00 buckshot 
patterns at various ranges and applied to each pattern the method of Mattoo and Nabar, the 
method in which the area of the smallest circumscribed rectangle is used, and an overlay 
method for obtaining the radius of the smallest circle that will just enclose the pallet pattern. 
The measurements of pellet pattern spread obtained were then subjected to linear regression 
analysis so that we could determine which method showed the best correlation between its 
measurement of pattern spread and the range of fire and which method allowed the smallest 
confidence limits for range-of-fire estimates. 

Experimental Procedure 

A Remington Model 12, 12-gauge shotgun with a 508-mm (20-in.) cylinder-bored barrel 
was used to fire Remington 12-gauge, 70-mm (23/4-in.) 00 buckshot cartridges (nominal 
pellet diameter, 8 mm [0.33 in.]; nine pellets per round) at 914 by 914-mm (36 by 36-in.) 
butcher paper. All the cartridges belonged to a single batch. The shots were fired at ranges 
of 3.6 to 10.7 m (12 to 35 ft) in 0.3-m (1-ft) increments. Three shots were fired at each range, 
for a total of 72 rounds. No shots were fired within the 3.6-m (12-ft) range; within this range 
the buckshot did not make individual holes in the target material. 

The spread of each pellet pattern was determined in three ways. A grid overlay (engineer- 
ing Mylar* with 25-mm [l-in.] grids subdivided into 2.5-mm [l/10-in.] grids) was placed 
over the pellet pattern with its y axis oriented vertically. The x and y coordinates of each 
pellet hole were then recorded. The center of mass (com) of the pellet pattern was then 
calculated from the following formulas: 

9 

Xco m : ~ Xi/9 
i = 1  

(1) 
9 

Ycom ---- ~ Yi/9 
i = 1  

The dispersals S of the pattern were then determined by calculation of the second moment 
[3] of the pattern: 

S-----I~i=I [(xi--Xc~176 (2) 

This treatment is essentially the same as that suggested by Mattoo and Nabar [1]. The area 
A of the smallest circumscribed rectangle that would enclose the pellet pattern was obtained 
as a product of the largest difference in the x coordinates and the largest difference in the y 
coordinates. 

A 203-mm (8-in.) plastic overlay marked with concentric circles (Fig. 1) was placed over 
each pellet pattern and moved about until its center appeared to coincide with the center of 
the pellet pattern. The radius R of the smallest circumscribed circle that would completely 
enclose the pellet pattern was then read directly from the overlay. 

Regression Analysis 

Two problems confront us as we examine the results of our test firings (Table 1 and Fig. 2). 
We must determine the appropriate functional relationships between S, R, and A and the 
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F I G .  1--Plastic overlay used to determine radius of circle that will enclose pellet pattern. 

range of fire. This is the problem of establishing the proper regression line. Knowledge of the 
correct regression line is essential if we wish to estimate the range from which a questioned 
shotgun pellet pattern with known values of S, R, or A was fired. We must also estimate the 
degree to which the values of S, R, and A tend to scatter from their respective regression lines. 
Without such information no confidence interval for an estimated range can be obtained. 

Examination of Fig. 2 reveals that S and R are apparently linear functions of the range, 
while A is not. Because A is approximately proportional to R 2, A would be expected to be a 
quadratic function of the range. On the other hand, x/A may be linear with respect to range. 
Figure 2 strongly suggests this to be the case. 

The functional relationship between S, R, and ~ and the range of fire was chosen to be 

y = a + b x  (3) 

where x : range of fire; y = S, R, or x/A; and a and b are the regression coefficients. When 
the standard deviations of the y's are constant, the method of least squares applied to n pairs 
of values (x i ,  yi) yields the following formulas for a and b [4, p. 104]: 

a = 1 / A  i l X2ii I yi -- i IXii 1Xiyi (4) 

(n i~_lxiYi '~_lXii~ ) b = 1/A - -  Y i  
i 1 

(5) 
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A = n  x 2 -  
i=l i 1Xi 

T h e  l inear  corre la t ion  coeff icient  r is g iven by [4, p. 12] 

n i~ lx iY i  -- x i Yi = i=1 i=1 

11 i : 1  ~ X2i - - ~ i ~ : l X i ) ]  ',~y2i - - ~ Y i ) J J  

(6) 

(7) 

T h e  coeff ic ient  r is a c o m m o n l y  used  e s t i m a t o r  of  t h e  degree  of t h e  l inear  co r r e l a t i on  be-  
tween the  x ' s  a n d  y ' s .  

T h e  sca t t e r  of the  d e p e n d e n t  var iables  f r o m  the  regress ion line is e s t ima ted  by the  s tan-  
da rd  er ror  of e s t ima te  S e [4, p. 114] where  

n 1/2 

S e :  " n - - 2  (8) 

T h e  conf idence  interval  for  an  e s t ima ted  r ange  2o ca lcu la ted  f rom a yo which  is t he  m e a n  of 
m y values is given by [3, p. 287] 

[(y t S  e 1 -- b b 2 
Y'~ + ] - ~  + - -  ~  a i=1 - -  

(9) 

TABLE 1--Experimental  results, u 

Range, ft S, in. R, in. A, infl ~/A, in. 

12 0.9 (0.1) b 1.1 (0.1) 3.0 (0.2) 1.7 (0.1) 
13 0.9 (O.1) 1.1 (0.1) 3.6 (1.1) 1.9 (0.3) 
14 0.9 (0.05) 1.1 (0.1) 3.4 (0.5) 1.8 (0.1) 
15 1.0 (0.1) 1.3 (0.1) 3.9 (0.6) 2.0 (0.2) 
16 1.0 (0.1) 1.3 (0.1) 4.0 (0.9) 2.0 (0.2) 
17 1.1 (0.1) 1.3 (0.1) 5.2 (0.8) 2.3 (0.2) 
18 1.1 (0.2) 1.4 (0.3) 5.6 (1.9) 2.3 (0.4) 
19 1.2 (0.1) 1.4 (0.2) 6.5 (1.3) 2.7 (0.1) 
20 1.3 (0.2) 1.7 (0.1) 7.3 (1.8) 2.7 (0.3) 
21 1.2 (0.2) 1.6 (0.2) 6.9 (1.7) 2.6 (0.3) 
22 1.4 (0.05) 1.7 (0.1) 8.0 (1.7) 2.8 (0.3) 
23 1.5 (0.2) 1.9 (0.3) 9.5 (2.8) 3.1 (0.5) 
24 1.3 (0.3) 1.7 (0.4) 7.9 (4.0) 2.7 (0.7) 
25 1.5 (0.3) 1.9 (0.5) 11.6 (7.0) 3.3 (1.0) 
26 1.6 (0.1) 2.0 (0.3) 11.6 (3.0) 3.4 (0.4) 
27 1.9 (0.2) 2.6 (0.3) 16.1 (4.1) 4.0 (0.5) 
28 1.8 (0.1) 2.2 (0.3) 14.3 (1.5) 3.8 (0.2) 
29 2.0 (0.1) 2.5 (0.1) 15.6 (2.9) 3.9 (0.4) 
30 2.0 (0.3) 2.6 (0.3) 17.6 (3.9) 4.2 (0.5) 
31 2.1 (0.2) 2.7 (0.3) 18.8 (4.1) 4.3 (0.5) 
32 2.0 (0.03) 2.7 (0.3) 17.0 (1.4) 4.1 (0.2) 
33 2.2 (0.2) 2.9 (0.2) 22.1 (4.6) 4.7 (0.5) 
34 2.1 (0.2) 2.6 (0.2) 19.7 (3.8) 4.4 (0.4) 
35 2.4 (0.2) 3.1 (0.2) 26.4 (5.7) 5.1 (0.5) 

al  in. = 23.4 mm and 1 ft = 0.3 m. 
bMean (standard deviation). 
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FIG. 2--Graphs of  A, ~A, R, and S as function of  the range of  fire. Error bars represent +_ one stan- 
dard deviation. Regression lines shown were obtained by weighted least squares with the weights 
calculated directly f rom the standard deviations, l in. = 25.4 mm and l f t  = 0.3 m. 



WRAY ET AL " BUCKSHOT PA'VfERNS 851 

where 

1 ~ (10) E = -  x i 
n i=1 

and t is student's t for the desired confidence level and n -- 2 degrees of freedom. Heaney and 
Rowe [5] have discussed the application of this confidence interval expression to the problem 
of range-of-fire estimation and the effect of increasing the number of test-fired patterns on 
the confidence interval of s Strictly speaking, this confidence interval expression is valid 
only where 

2 2 
t S e 

b 2 ~ (X i __ .~)2 
i = l  

<< l (11) 

When this is not the case, the more exact formulas of Brownlee [3, p. 286] or Draper and 
Smith [6, pp. 47-51] must be used. 

Examination of Table 1 and Fig. 2 shows that the standard deviations of S, R, and A are 
not constant: they tend to increase with range, although not uniformly. In such a case, a 
weighted least squares analysis is appropriate. The explicit formulas below are derived from 
the matrix formulation of weighted least squares given by Draper and Smith [6, pp. 
108-115]. 

For each x i there is a standard deviation s i. Each s/2 may be written 

S~=Ci s2 (12)  

The equations for a, b, and r now become 

1 ( ~  x2 ~ yi ~ xi ~ x iy i )  
a . . . . . .  (13) 

A i=l Ci i=l Ci i=l Ci i=l Ci 

1 ( ~  1 ~ xiyi ~ Xi ~ Y-~i ) b . . . .  (14) 
A i=l ci i=l ci i=l ci i=l 

x2_(  
i=1  Ci i=1  Ci i=1  r 

(IS) 

& ~ x iy i ~ X...s ~ Y_..~i 
i=l Ci i=l Ci i=l Ci i=l Ci 

(16) 
r :  i [  ,~ & ]~ 2 __ ( '~ ~i"~21 [ ' ~ & ]~ 2 __ ( '~ yi~2111/2 

i=1  Ci i=1  Ci \ i = 1  Ci / J L i = I  ci i=1  ci i=1  c i /  j 

The standard error of estimate may be calculated as before; however, Se is no longer of direct 
significance in calculating confidence intervals. The confidence interval for an estimated s 
derived from a Yo which is the mean of m y values with standard deviation s o is 

+ + - +  (Y~ 
n b2 ~.~ 

i= 1 Ci 

(17) 
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where 

2 2 
C o = So/S (18) 

and 

This confidence interval expression is derived under  the following constraints: 

i= 1 Ci 

l ~x i  
IZ i= 1 Ci 

(19) 

(20) 

The defining equation for s 2 now becomes 

s 2 =  ~ ~ 

i=1  S 2 

(21) 

The confidence interval expression is valid only when 

t 2 s  2 

b 2 ~ (Xi--X)2 
i=1 Ci 

< <  1 ( 2 2 )  

When this is not the case, the exact formulas of Brownlee [3, p. 316] or Draper and Smith 
[6, pp. 125-126] must be used. 

In the usual range-of-fire estimation problem there is only a single questioned pattern, so 
that m = 1. The standard deviation s o is unknown, but  may be estimated from a knowledge 
of the variation of the sis with the xi s. If go is the estimated standard deviation corresponding 
t o y  o, then the confidence interval expression becomes 

where 

ts f" 1 (Yo -- a -- bx) 2 

2o + -~1 l ~o + - -  + ---7, . . . . . .  
n b 2 t E 1 (x  i - -  x ) 2 / c  i 

~2 
S o = ~o s2 

1/2 

(23) 

(24) 

If the regression line is based on a large number  of test-fired rounds so that 

(Yo - -  a - -  b ~ ' )  2 
1/n = 0 and 

b 2 ~ (X i - - ~ ) 2 / C  i 
i=1 

is small, the confidence interval expression becomes approximately 

tgo 
G +  Ibl (25) 

A weighted least squares analysis was used to fit a linear function to the data for S, R, x/A, 
and A versus range of fire. In addition to a, b, and r, t2s2/b2 ~i=ln [(x i -- E)2/ci] was 
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calculated to verify the applicability of the confidence interval expression above. Since s 2, E, 
and 1 / b  2 ~"  i= 1 [(xi - -  E )2 / c i ]  are required for confidence interval estimation these were also 
calculated. The data for all 72 rounds were used in these calculations, rather than the means 
given in Table 1. Since the same number of replicate shots were fired at each range, either 
the original data or the means could be used in the calculation of a and b; however, the re- 
maining calculated expressions must be computed from the original data. 

The appropriate weighting factors l / c  i may be determined in one of two ways: the ex- 
perimentally determined standard deviations may be used to calculate the 1 / c i s  [3 ,4 ,6] ,  or 
the standard deviations may be fitted to a regression equation in x, from which an estimated 
standard deviation is obtained for each x i and used to calculate 1 /c  i [3,6].  The second ap- 
proach is the more time-consuming; however, in theory it results in an improved value of the 
standard deviation at each x i by "pooling" the standard deviations for all the different 
ranges of fire. This procedure also permits the estimation of the standard deviation for a 
questioned pellet pattern. The standard deviation data in the present study were fitted to a 
linear model, since this model permits standard deviations that increase with increasing 
range. It has been found in many applications that such a model is appropriate [3, p. 308]. 
For purposes of comparison, the weighting factors were determined both from the original 
standard deviation and from the fitted equation of standard deviation as a function of range. 

A weighted least squares analysis was also used to fit the data for A versus range of fire to 
a quadratic function, namely, 

y = a + b x  + c x  2 

The regression coefficients a, b, and c were obtained as was the multiple correlation coeffi- 
cient [4, p. 131]. Because confidence intervals for estimates of range would in this case re- 
quire the solution of quartic equations [6, pp. 125-126], the regression analysis was not ex- 
tended to the calculation of the standard error of estimate or other quantities pertinent to 
confidence interval calculations. The weighting factors in this case were calculated from the 
original standard deviations without recourse to a fitting procedure. 

Results and Discussion 

The means and standard deviations of the dispersal S, radius R, area A, and square root of 
the area x/A for each range are shown in Table 1. These data are shown plotted versus range 
in Fig. 2. As may be seen, the standard deviations of A increase dramatically with range and 
are always much larger tharf the standard deviations of S, R, or x/A. The area measure of 
pellet pattern spread is apparently very susceptible to the effects of the erratic flight of so- 
called "flyers," pellets that impact the target outside the main pattern area. The exclusion of 
these erratic outliers might improve the shot-to-shot consistency of A;  however, such exclu- 
sion would be to a large extent subjective and arbitrary, because statistical tests would allow 
such exclusion only in very rare cases. The exclusion of outliers or flyers could have serious 
consequences for range estimations based on 00 buckshot patterns, since the exclusion of a 
single pellet as a flyer represents the omission of V0 or l/u of the total pattern (depending 
on the number of pellets in the shot cartridge). 

Table 2 presents the results of the regression analysis performed on the data for all 72 test- 
fired rounds. As may be seen in Table 2, the linear correlation coefficients indicate that a 
linear function adequately represents the relationship between S, R, and x/A and the range 
of fire, while a quadratic function better represents the relationship between A and the range 
of fire. The method of weighting does effect the values of the regression coefficients and the 
linear correlation coefficients, but only to a small degree. Clearly, using the weights 
calculated directly from the standard deviations results in better linear correlations. 

2 2 " The values ofs / b  ~ i =  ! [(xi - -  xr)2/ci] nmy be used to test the validity of the approximate con- 
fidence interval expression (Eqs 17 and 23). Table 3 gives the values of t 2 s 2 / b  2 E ~ - i  [(xi - -  
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X)2/Ci] for the various measures of pellet pattern spread, calculated at the 99.9% confidence 
level for 70 degrees of freedom (df ---- n -- 2). The approximation of Eqs 17 and 23 is gener- 
ally considered valid for most purposes if 

n__ E) 2 (x i  
t 2 s 2 / b  2 ~ < 0.l  [4, p. 287] 

i =  1 Ci 

As may be seen from Table 3, Eqs 17 and 23 should be usable for all the measures of pellet 
pattern spread. 

Table 4 illustrates the calculation of an estimated range of fire and its confidence interval 
using Eq 23 and the data from Table 2. The estimated standard deviations were obtained us- 
ing the regression equation in Table 2 (b). The confidence interval was calculated for 70 
degrees of freedom (df = n -- 2) at a 99.9% confidence level (t = 3.4). This choice is to 
some degree arbitrary. Examiners may wish to use lower confidence levels, such as 99 or 
95%, or an even higher confidence level may be deemed appropriate in some cases. 

The following are some general guidelines for applying regression analysis to range-of-fire 
estimations: 

1. Fire all test shots with the suspect weapon and with ammunition from the same batch 
as that used to fire the questioned pellet patterns. 

2. Fire the test shots over as wide as a spread of ranges as is practical so as to minimize 
1 / b  2 ~n i=1 [(Xl - -  X)2/Ci]" (This makes it more likely that Eqs 17 and 23 will be valid and also 
will narrow the confidence interval for the estimated range.) 

3. Fire several shots at each range. (This allows a determination of the variation of the 
standard deviations with range.) 

4. Having carried out the regression analysis, test the model function being fitted for ap- 
propriateness by examining the linear or multiple correlation coefficients. 

5. If the model chosen is deemed appropriate, estimate the standard deviation for the 
questioned pellet pattern and use Eq 23 to calculate the estimated range of fire and its 
associated confidence interval. 

Summary 

Three methods of measuring the spread of shotgun pellet patterns were applied to 72 00 
buckshot patterns so that we could determine which method was best fitted by a linear func- 

TABLE 3--t2s2/b 2 En=t [(x i -- x)2/ei]  at 99. 9% confidence level 
(t = 3 . 4 ) f o r  70 degrees o f  f r eedom (d f  = n -- 2). 

t2s2/b  2 E" [(x i -- x)2/ci] 
i = 1  

(a) W E i G [ - r r s  C A L C U L A T E D  D I R E C T L Y  F R O M  S T A N D A R D  D E V I A T I O N S  

Dispersal S 0.0056 
Radius R 0.0083 
Area A 0.0144 

v~ 0.0091 

(b) W E I G H T S  C A L C U L A T E D  F R O M  R E G R E S S I O N  A N A L Y S I S  OF  

S T A N D A R D  D E V I A T I O N S  

Dispersal S 0.016 
Radius R 0.019 
Area A 0.026 

x/A 0.022 
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tion of the range of fire and which method yielded the smallest confidence interval. A disper- 
sal method S, essentially the same as the "effective shot dispersion" of Mattoo and Nabar 
[2], a method in which the area A of the smallest circumscribed rectangle that will just 
enclose the pellet pattern is calculated, and an overlay method for determining the radius 
R of the smallest circumscribed circle that will just enclose the pellet pattern were all tested. 
Of these three, the dispersal S showed the best fit to a linear function of the range and areaA 
the worst. Use of the square root of A resulted in a significant improvement in the fit. The 
area A was also found to show the highest shot-to-shot variation and gave the widest con- 
fidence interval for range-of-fire estimates. The dispersal S gave the smallest confidence in- 
terval for range-of-fire estimates; however, the differences in the confidence intervals for x/A, 
S, and R were small. 
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